Shrinkage Estimation of Large Dimensional Precision Matrix Using Random Matrix Theory

نویسندگان

  • Cheng Wang
  • Guangming Pan
  • Tiejun Tong
  • Lixing Zhu
  • CHENG WANG
  • GUANGMING PAN
  • TIEJUN TONG
  • LIXING ZHU
چکیده

This paper considers ridge-type shrinkage estimation of a large dimensional precision matrix. The asymptotic optimal shrinkage coefficients and the theoretical loss are derived. Data-driven estimators for the shrinkage coefficients are also conducted based on the asymptotic results from random matrix theory. The new method is distribution-free and no assumption on the structure of the covariance matrix or the precision matrix is required. The proposed method also applies to situations where the dimension is larger than the sample size. Numerical studies of simulated and real data demonstrate that the proposed estimator performs better than existing competitors in a wide range of settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory

In estimation of the large precision matrix, this paper suggests a new shrinkage estimator, called the linear ridge estimator. This estimator is motivated from a Bayesian aspect for a spike and slab prior distribution of the precision matrix, and has a form of convex combination of the ridge estimator and the identity matrix multiplied by scalar. The optimal parameters in the linear ridge estim...

متن کامل

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed who...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Large Dimensional Random Matrix Theory for Signal Detection and Estimation in Array Processing∗

In this paper, we bring into play elements of the spectral theory of large dimensional random matrices and demonstrate their relevance to source detection and bearing estimation in problems with sizable arrays. These results are applied to the sample spatial covariance matrix, R̂, of the sensed data. It is seen that detection can be achieved with a sample size considerably less than that require...

متن کامل

Spectrum estimation for large dimensional covariance matrices using random matrix theory

Estimating the eigenvalues of a population covariance matrix from a sample covariance matrix is a problem of fundamental importance in multivariate statistics; the eigenvalues of covariance matrices play a key role in many widely techniques, in particular in Principal Component Analysis (PCA). In many modern data analysis problems, statisticians are faced with large datasets where the sample si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015